
Towards Novel Techniques for Reasoning in Expressive Description Logics
based on Binary Decision Diagrams ?

Uwe Keller

Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
uwe.keller@deri.org

Abstract. We propose to design and study new techniques for description logic (DL) reasoning based on a prominent
data structure that has been applied very successfully in various domains in computer science where one has to face the
efficient representation and processing of large scale problems: Binary Decision Diagrams (BDDs). BDDs have been
used very successfully for reasoning in propositional logics, and have been lifted to the level of first-order logics, too.
In both cases, they provide a rich semantic structure to guide proof search. Therefore, we believe that (i) BDDs are
interesting to study in the context of reasoning for a logic of intermediate expressivity (such as DLs) and (ii) that they
provide a fertile ground for the design of novel efficient methods for reasoning in particular expressive DLs. The project
will help to enrich the available machinery of DL reasoning techniques.

1 Introduction

Description Logics (DLs) [1] are a family of class-based knowledge representation formalisms characterised by the use of
various constructors to build complex classes from simpler ones, and by an emphasis on the provision of sound, complete
and (empirically) tractable reasoning services. They have a wide range of applications, but are most widely known as the
basis for ontology languages such as OWL. Recently, [14] pointed out that the increasing use of DL-based ontologies in
areas such as e-Science and the Semantic Web however is already stretching the capabilities of existing DL systems, and
brings with it a range of challenges for future research on reasoning methods for DL. Key issues here are the provision of
efficient algorithms that allow (advanced) applications (i) to scale up to knowledge bases of practical relevance and (ii)
to leverage expressive languages for capturing domain knowledge. However, expressiveness of DLs comes at a price: the
theoretically high (worst-case) complexity of relevant reasoning tasks. Hence, it is unlikely, that there is a single method,
that performs well in all possible cases. Rather, one can expect that specific techniques perform well one particular classes
of problems.
So far, research in practical DL reasoning methods has centered around structural subsumption algorithms [2] and tableau
methods [13], and have recently been extended by the application of the resolution principle [16,18] (and optimized eval-
uation techniques from the area of deductive databases) to expressive DLs. Automata-based approaches (e.g.(e.g. [24])
(although possible in theory) have had nearly no impact on the development of practical reasoning algorithms for DLs.
Based on the observation of recent trends in the area of DL reasoning and the research challenge identified in [14] for this
field, we propose to design and research novel techniques for Description Logic reasoning that are based on a well-known
principles of reasoning that (a) has been studied for other (especially more expressive) logics, (b) proved itself to be a suc-
cessful method of reasoning for these logics and (c) work significantly different from current state-of-the-art techniques
in DL reasoning. More specifically, we propose to investigate the use of Binary Decision Diagrams (BDDs) [3] and their
manifold variants and extensions as a fundamental framework for realizing well-known reasoning tasks, in particular for
expressive DLs.

2 Binary Decision Diagrams and their Variants

A Binary Decision Diagram (BDD) [3] is a simple data structure for representing an (n-ary) boolean function f :
{0, 1}n → {0, 1}. A boolean function f(x1, . . . , xn) can be represented as a rooted, directed, acyclic graph, which
consists of decision nodes and two terminal nodes called 0-terminal and 1-terminal. Each decision node is labeled by
a Boolean variable xi and has two child nodes called low child and high child. The edge from a node to a low (high)
child represents an assignment of the variable to 0 (1). Such a BDD is called ordered if different variables appear in
the same order on all paths from the root. It is called reduced if the graph is reduced according to two rules: (i) merge
any isomorphic subgraphs, and (ii) eliminate any node whose two children are isomorphic. Consequently, reduced BDDs
reuse structures in the BDD representation to a maximum extent and therefore shrink the size of the representation. Most

? This work has been funded by the Austrian Federal Ministry for Transport, Innovation, and Technology under the project Semantic
Engineering Support Environment (SEnSE, FIT-IT contract FFG 810807).

often, the term BDD refers actually to Reduced Ordered Binary Decision Diagram (ROBDD), i.e. BDDs that are reduced
in regard of a specific (given) order. The advantage of an ROBDD is that it is canonical (unique) for a particular boolean
function: Although the boolean function might have various (equivalent) descriptions, the respective ROBDD is unique.
A path from the root node to the 1-terminal represents a (possibly partial) variable assignment for which the represented
Boolean function has the value true. As the path descends to a low child (high child) from a node, then that node’s
variable is assigned to 0 (1).
The fundamental and most important characteristic of ROBDDs hereby is (i) an extreme compression in many practical
cases (after the application of reduction rules to remove eliminate redundancies) and (ii) very fast implementations of
standard operations on boolean functions. Although the (naive) representation of a boolean function in a BDD might
be very large (and require exponential space wrt. the number of boolean input variables), given some fixed ordering on
input variables, BDDs can most often be reduced to an OBDDs (representing the same function) such that the resulting
representation actually is comparably small (e.g. polynomial wrt. the BDD representation). In particular, for a given
ordering the reduced form is unique, and the OBDD for the n − ary boolean function which returns always 0 consists
only of the 0-terminal node. The achievable compression crucially depends on the chosen variable ordering, i.e for many
boolean functions there exists an ordering such that the corresponding reduced OBDD has a minimal size. On the other
hand, there are functions (e.g. the multiplication function) that are inherently difficult, i.e. no variable ordering exists
such that the reduced OBDD has small size. Practical experience shows, that such functions are rare in many industrial
applications. Finding an optimal variable ordering is known to be intractable [26], however heuristics often work well in
practice [23].
BDDs have been applied in various domains, most prominently hardware verification [17], in Computer Aided Design
(CAD), and in software to synthesize circuits (logic synthesis). Very often, they superseded previously known methods.
Various variations and generalizations of BDDs have been developed over time to overcome limitations for particular
domains, e.g. Zero Suppressed Decision Diagrams (ZDDs), Binary Moment Diagrams (BMDs), Free Binary Decision
Diagrams (FBDDs), (reduced ordered) Multi-valued Decision Diagrams ((RO)MDDs).

3 How to Reason with BDDs

BDDs can be used for reasoning in propositional logics straightforwardly: A propositional formula φ(x1, . . . , xn) con-
taining n propositional variables xi can be seen as an n-ary boolean function. To construct a BDD for φ(x1, . . . , xn)
one can apply Shannon’s decomposition principle: for all boolean variable assignments x1, . . . , xn ∈ {0, 1} it holds that
φ ⇔ (xi ⇒ φ{xi/1}) ∧ (¬xi ⇒ φ{xi/0}), where φ{x/φ′} denotes the formulae which is constructed from φ by
replacing all occurrences of x by φ′. The principle can be recursively applied, potentially in regard of a given ordering≺
on the propositional variables xi in φ. Reduction and simplification operations can be applied after each step to construct
a ROBDD. Since the ROBDD for a boolean function is unique, one can read off immediately from the constructed BDD,
if the respective input formula is unsatisfiable (or valid): φ is unsatisfiable (valid) if the respective ROBDD contains
only the node 0 (1). This shows immediately that the construction of an ROBDD in the worst-case is expensive (unless
P = NP). However, in practice (especially when applying a suitable variable ordering ≺) the construction of ROBDDs
can be done efficiently. Alternatively, BDDs can be constructed bottom up, too, starting from atomic subformulae step-
wise to increasingly complex sub-formulae of φ, since the application of logical operators (e.g. ∧,∨,¬,⇒,⇔) to combine
formulae to more complex ones can be implemented very efficiently (i.e. in linear or quadratic time in the size of the
BDDs to be combined) as standard BDD graph operations on the the corresponding BDDs.
Interestingly, BDDs are very rich structures for storing semantic information about the input formulae φ: in the propo-
sitional case, paths from the root to the 1 leaf node compactly represent all models of φ (wrt. to the given propositional
signature). Analogously, all pathes from the root to the 0 leaf node capture compactly all counter models for φ, i.e.
interpretation for which φ is not satisfied. Further, if one considers a 1-path as a conjunction of literals and the set of
1-pathes disjunctively combined, then the BDD contains a disjunctive normal form of φ. At the same time, one can di-
rectly interpret the set of 0-pathes in the BDD as a conjunctive normal form for φ. This is promising since proof search
strategies can be implemented on top of BDDs that use either normal form representation. Since tableau methods can
be seen as processes that derive a disjunctive normal form for an input formula φ and resolution methods as processes
that iteratively extend conjunctive normal forms of φ, we expect that techniques from both fields can be considered for
the design of efficient proof search strategies. Further, we believe that BDDs are able to provide a uniform structure that
can be used to realize a variety of reasoning tasks for logics (beyond satisfiability), because they are inherently encode
compactly a lot of semantic (i.e. syntax-independent) information about φ: in the propositional case this is the whole
truth table of φ.
The link to First-order Logics (FOLs) is as well rather straightforward: Let Σ be a first-order signature (including two
0-ary predicates 1 and 0 denoting the respective truth values and a set V of variable names). The set of terms Term(Σ)
is defined as usual as the smallest set containing all variables x ∈ V and is closed under the application of n-ary function
symbols f ∈ Σ to any combination of n terms. The set of atomic formulaeL0(Σ) is defined as the set of expressions that
can be generated from terms by applying any n-ary predicate symbol p ∈ Σ to any combination of n terms. The First-
order Logic L(Σ) over signature Σ is then defined as the smallest set of expression that contains all atomic formulae

φ ∈ L0(Σ) and is closed under the application of the usual logical junctors ¬,∧,∨,⇒,⇔ as well as the application of
any quantor Q ∈ {∃,∀} to any pair of variable x ∈ V and formula φ ∈ L(Σ).
For the sake of simplicity (and without loss of generality1), we consider here only formulae φ ∈ L(Σ) in universal
prenex form, i.e. have the form φ = ∀x1, . . . , xn.Mφ with Mφ a quantifier free formulae. The described techniques can
be extended to the full language L(Σ) as shown e.g. in [22,9]. For such a φ we construct the Binary Decision Diagram
BDDφ = bdd(Mφ), i.e. a graph (V,E) with vertices v ∈ V and l-labeled edges e = (v, l, v′) ∈ E recursively as
follows:

bdd(ψ) =



({l}, ∅) if ψ = l ∈ {0, 1}
({a, 0, 1}, {(a,+, 1), (a,−, 0)}) if ψ = a ∈ L0(Σ) \ {0, 1}
negbdd(bdd(ψ′)) if ψ = ¬ψ′

conjunctbdd(bdd(ψ′), bdd(ψ′′)) if ψ = ψ′ ∧ ψ′′

disjunctbdd(bdd(ψ′), bdd(ψ′′)) if ψ = ψ′ ∨ ψ′′

implbdd(bdd(ψ′), bdd(ψ′′)) if ψ = ψ′ ⇒ ψ′′

biimplbdd(bdd(ψ′), bdd(ψ′′)) if ψ = ψ′ ⇔ ψ′′

whereby negbdd, conjunctbdd, disjunctbdd, implbdd, biimplbdd represent standard operations to negate BDDs and
to combine BDDs conjunctively, disjunctively, by implication, and biimplication. The resultingBDDφ therefore contains
only nodes that represent atomic subformulae occurring in φ, 1, or 0; atomic subformulae are considered as (unstructured)
propositional letters. For any given φ, BDDφ can be constructed in finite time (and usually very fast). Reduction (wrt.
a fixed order ≺ on atomic formulae in L0(Σ) can be applied as in the propositional case. If BDDφ is considered as a
formula (in the so-called if-then-else or Shannon normal form), then BDDφ is logically equivalent to Mφ.
Clearly, since BDDφ in general contains atomic formulaes with variables, we can not determine the unsatisfiability of
φ directly from the graph structure. However, it is a compact, logically equivalent representation of Mφ that allows to
check (in many practical cases) efficiently for unsatisfiability if no variable were present in φ, or ifMφ contains variables
but is already propositionally unsatisfiable. Hence, the question is how to deal with the variables (and therefore the
quantifiers) in φ = ∀x1, . . . , xn.Mφ which is equivalent to ∀x1, . . . , xn.BDDφ. Here, Herbrand’s theorem [4] provides
the theoretical means to identify the missing piece to devise a proof procedure for FOL, since it allows to reduce FOL
unsatisfiability to unsatisfiability on propositional logic: A formulae of the form φ = ∀x1, . . . , xn.Mφ is unsatisfiable
iff. there exists a k ∈ N and a substitution σ such that (M1

φ ∧ M2
φ ∧ . . . ∧ Mk

φ)σ is a propositionally unsatisfiable
formulae, wherebyM i

φ denotes a ,,new” copy ofMφ where the variables x1, . . . , xn inMφ have been renamed uniquely
to xi

1, . . . , x
i
n such that they do not occur by any other copy M j

φ and xi
k 6= xi

l if xk 6= xl.
Therefore, we can devise a FOL proof procedure by enriching the data structure BDDφ with a search procedure that
attempts to find suitable number of extension step k and ground substitution σ, such that Πk,σ(φ) = (M1

φ ∧M2
φ ∧ . . .∧

Mk
φ)σ can be demonstrated as being unsatisfiable. Since Πk,σ(φ) is propositional and can be efficiently constructed (for

any k) from BDDφ (essentially by application of the standard conjunctbdd operation), the compact representation of
Mφ and the ,,built-in” unsatisfiability check are promising features of BDDs as the basis of a FOL proof procedure. For a
given k (starting with k = 1), the search procedure can try to find a suitable substitution σ that ,,falsifies” (or refutes) the
BDD and iteratively increase the number of required copies k if all possibilities have been explored but turned out to be
unsuccessful. Clearly, blind guessing of candidates σ is absolutely undesirable. As in Semantic Tableau and Resolution,
the proof procedure should take the formulae (and its structure) itself into account and use well-known tools such as
unification and the computation of most general unifiers. Here, BDDs provide again a rich structure and various options
for this specific purpose (even if orderings are not used), such as analysis and elimination of 1-paths or strategies that
work with 0-paths instead. Clearly, the proof procedure is only guaranteed to terminate in the case of an unsatisfiable
formula. For FOL, this can not be changed since the set of satisfiable formulas in FOL is not recursively enumerable.
A straightforward way to apply BDDs to DL reasoning could then be as follows: many DLs can be considered as very
restricted subsets of FOLs, where the syntactic restrictions lead to decidability of fundamental reasoning tasks such as
unsatisfiability of a knowledge base. This even works for very expressive DLs as long as they can be ,,embedded” to FOL.
The main question here is how to achieve the termination of the FOL proof procedure in these cases. Clearly, there are
two parameters to play with: (a) the translation function that embeds a given DL knowledge base into a set of first-order
formulae, and (b) suitable refinements (or restrictions) of the proof search process based on the specific characteristics of
the underlying DL (such as the finite tree model property) or the syntactic structure of the generated set of FOL formulae.
In regard of (b), we are very optimistic, since BDDs can be used to generate some tableau-like as well as some resolution-
like (micro) inference steps (when simplifying the BDD that represent the current state of the proof search), we expect
that certain well-studied techniques can be rebuilt in the BDD framework. At the same time we can exploit in the BDD
framework that it possible to do both at the same time: checking unsatisfiability of a formula (non-existence of consistent
and deductively complete 1-paths) as well as its satisfiability (the presence of a consistent deductively complete 1-path).
Therefore, novel techniques for reasoning (even for very expressive DLs), potentially interweaving both processes can
be designed and investigated thoroughly.

1 Every formulae φ ∈ L(Σ) can be transformed into an equi-satisfiable formula in universal prenex form in polynomial time [19]

In the past, a few approaches [21,8,22,12] on how to generalize the principles underlying BDDs and OBDDs from
the propositional level to the first-order level have been studied. Each of them could serve as a distinct starting point
for our purposes and will be investigated closely. A brief overview of essential underlying principles is given in [10].
Interestingly, [11] shows theoretically that BDDs and Resolution are fundamentally different techniques for Propositional
Logic, whereby the argument carries over to FOL. Further, [22] discusses the relation of their specific approach to First-
order Semantic Tableaux, and points out the specifically important advantage of the BDD-based method over Semantic
Tableaux which is the property of very compact representations during proof search.
All these approaches target at First-order Logics and therefore at checking for unsatisfiability of an input formula. For
reasoning in DLs, a possible and slightly different approach would be the following: one exploits the rich structure of
BDDs to search for models of an input formula, i.e. to build a model generation procedure based on BDDs. This is
essentially the basic idea underlying the DL tableau procedures (that work on a different representation than BDDs) and
can be expected to simplify termination proofs for all input formulas (e.g. for DLs with the finite model property).
The resulting model generation algorithm will be different from the proposed unsatisfiability checking algorithms for
FOL, since it uses the information that is represented in the BDD in a different way and applies different modifications.
Still, both algorithms can be represented and performed on top of the BDD representation of the input formulae (or
knowledge base). This suggests to study the possibility and efficiency of deductive process that interweave both activi-
ties (i.e. theorem proving and disproving). In consequence, a resulting model generation procedure would be applicable
(when dropping certain DL-specific assumptions) to First-order Logics, too, and potentially result in novel techniques
for model generation for FOLs.

4 Related Work

In the following we briefly discuss approaches that are relevant for DL reasoning and make major use of Binary Decision
Diagrams during the proof search.

The Knowledge Cartographer Approach. The work reported in [5,6,7] takes a purely set-theoretic perspective on DL
reasoning, especially on TBoxes. The underlying idea is simple, yet elegant: Given a DL signature Σ for any inter-
pretation over Σ the universe under consideration is partitioned into a number of non-overlapping sets (so-called atomic
regions). Given any interpretation, the extension (or interpretation) of any concept expression overΣ can be composed by
atomic regions (via set-theoretic union) only. If we consider a given TBox T (as it is common in practical applications),
then the possible partitions of the universe of models of T are often restricted severely (in comparison to the partitions
for arbitrary interpretations) and the number of atomic regions decreases drastically. Hence, if n is the number of atomic
regions, then any concept expression can be identified with an n-dimensional bit vector in Bn (the so-called signature).
The base vectors of the canonical basis of Bn represent the atomic regions themselves. Since concept are constructed
essentially by means of set-theoretic operations, the most important (yet simple) concept constructors (such as u,t,¬)
can be very efficiently mapped (and implemented) by means of bit-operations on signature. Important semantic tests
between concept expressions can be check by simple comparison of the bit vectors (that are linear in the size n of the
bit vectors), e.g. concept C1 is subsumed by concept C2 if for the corresponding signatures (or bit vectors) it holds that
sig(C1) ≤ sig(Cn). However, in the worst-case the required length n of the bit vectors is exponential in the size of the
signature. The key problem in this approach is to determine needed atomic regions for a given signature Σ and TBox T .
Ordered BDDs are taken as an efficient means for computing the signatures that need to be considered for a given TBox
T . In this sense, T is compiled in a preprocessing step into a semantic data structure that later on simplifies particular
semantic checks, such as concept subsumption. The approach is defined for a restricted subset of the DL ALC and can
not deal with arbitrary concept descriptions for ABox queries. The reported evaluation results seem to indicate superior
performance over state-of-the-art systems, especially in the presence of ABoxes of significant size. One has to keep in
mind here, that the a system for a rather limited DL is compared against more general DL system. Further, the performed
result are not well documented and do not give a clear indication of scientific significance of measured experiment.

A BDD-based calculus for Reasoning in the Modal Logic K. Very recently [20] proposed a novel satisfiability check-
ing procedure for formulae in the basic modal logic K. It has been reported that a corresponding implementation is
competitive or even superior to existing highly-optimized modal reasoning systems for certain knowledge bases (KB). In
particular, for formulae that require extensive modal reasoning, the method seems to perform very well. The authors note,
that the method can be extended to the multi-modal logic K(m). Since K(m) can be considered as a syntactic variant of
the description logic ALC [25] (where m corresponds to the number of role names in the underlying DL signature), the
proof procedure is suitable for reasoning with the non-trivial DL ALC, too. It is not clear to what extent it is possible to
transfer the approach to other more expressive DLs than ALC. Further, testing satisfiability of a formula wrt. to back-
ground knowledge is not covered in [20].

In contrast, to these specific related BDD-based techniques the approach that we propose addresses DL reasoning by
refinement and tailoring of BDD-based calculi for a logic that is more expressive than many expressive DLs, namely
First-order Logic. It has therefore inherently the advantage to be applicable to a wide range of expressive DLs, that go

beyond ALC. Further, it has the potential to support expressive extensions of DLs that result in undecidable yet empiri-
cally still tractable knowledge representation frameworks. We expect that major elements of the Knowledge Cartographer
approach naturally arise in our framework and allow to related both approaches on a more detailed technical level.

5 Conclusions & Future Work

We have proposed to investigate the use of BDDs and their manifold variants and extensions as a fundamental framework
for realizing well-known reasoning tasks, in particular for expressive DLs. BDDs are very rich structures capturing a
variety of useful information that can be exploited by inference calculi during proof search. We are especially interested
in investigating and refining BDD-based calculi that have been proposed for First-order Logics a couple of years ago.
Since there are various different ways of using BDDs to design new inference calculi and numerous variants of the BDD
data structure, we expect that BDDs give us sufficiently many options for our investigation and gives enough room to
come up with useful novel inference techniques. Using the approach of refining FOL techniques naturally enables us
to cope with various expressive DLs (such as the ones underlying the Web Ontology Language (OWL) in version 1.0
(SHOIN (D)) and version 1.1. (SROIQ [15], with extensions for metamodeling and n-ary datatypes). Further, the
investigation of the behavior of the developed methods for certain tractable subsets of such DLs (e.g. the ones discussed
in OWL 1.1 language proposal2) is certainly desirable.
We expect that the proposed research agenda helps to evolve the state-the-art in the field of Description Logic reasoning
by (i) extending the available machinery of tools for reasoning in expressive DLs by distinctively novel methods and
(ii) by provision of a deep understanding of the strengths and potential weaknesses of the developed novel methods.
Our ultimate aim is to design techniques to help to increase the possible range of applications of DLs for knowledge-
based and intelligent systems. As far as possible, we aim to identify potential extensions to existing DL-based knowledge
representation frameworks to make them more expressive for applications while still staying in an empirically tractable
framework. This is well in line with the needs of advanced applications of DLs as is has been discussed in [14]. Technical
details of a BDD-based inference calculus for ALC are subject to an upcoming paper. In all approaches to BDD-based
FOL proof procedures that we are aware of, specific means of equality reasoning or reasoning with of concrete data-types
have not been studied yet. However, this is needed to deal with popular features in expressive DLs such as cardinality
restrictions or concrete domains and it therefore subject of investigation after we are able to deal with ALC. Eventually,
investigations on how to deal with large ABoxes (e.g. provided and managed by a relational database system) and the
integration of rules and rule-based reasoning could complete the outlined research project along dimensions that are
currently observable as main lines of research in the DL field.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, 2003.

2. Alexander Borgida and Peter F. Patel-Schneider. A semantics and complete algorithm for subsumption in the classic
description logic. J. Artif. Intell. Res. (JAIR), 1:277–308, 1994.

3. Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Comput. Surv.,
24(3):293–318, 1992.

4. Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag, second edition edition, 1996.
5. Krzysztof Goczyla, Teresa Grabowska, Wojciech Waloszek, and Michal Zawadzki. The cartographer algorithm for

processing and querying description logics ontologies. In Advances in Web Intelligence Third International Atlantic
Web Intelligence Conference (AWIC 2005), Lodz, Poland, pages 163–169, 2005.

6. Krzysztof Goczyla, Teresa Grabowska, Wojciech Waloszek, and Michal Zawadzki. Cartographic approach to knowl-
edge representation and management in kasea. In Proceedings of International Workshop on Description Logics (DL
2005), Edinburgh, Scotland, UK, 2005.

7. Krzysztof Goczyla, Teresa Grabowska, Wojciech Waloszek, and Michal Zawadzki. The knowledge cartography
- a new approach to reasoning over description logics ontologies. In Theory and Practice of Computer Science,
32nd Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2006), Merı́n, Czech
Republic, pages 293–302, 2006.

8. Jean Goubault. Proving with bdds and control of information. In In Proceedings of the 12th International Conference
on Automated Deduction (CADE) Nancy, France 1994, pages 499–513, 1994.

9. Jean Goubault. A BDD-Based Simplification and Skolemization Procedure. Logic Jnl IGPL, 3(6):827–855, 1995.
10. Jean Goubault and Joachim Posegga. BDDs and automated deduction. In International Syposium on Methodologies

for Intelligent Systems, pages 541–550, 1994.

2 http://owl1_1.cs.manchester.ac.uk/tractable.html

http://owl1_1.cs.manchester.ac.uk/tractable.html

11. J. F. Groote and H. Zantema. Resolution and binary decision diagrams cannot simulate each other polynomially.
Discrete Applied Mathematics, 130(2):157–171, August 2003.

12. Jan Friso Groote and Olga Tveretina. Binary decision diagrams for first-order predicate logic. J. Log. Algebr.
Program., 57(1-2):1–22, 2003.

13. Ian Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD thesis, University of Manch-
ester, 1997.

14. Ian Horrocks. Applications of description logics: State of the art and research challenges. In Frithjof Dau, Marie-
Laure Mugnier, and Gerd Stumme, editors, Proc. of the 13th Int. Conf. on Conceptual Structures (ICCS’05), number
3596 in Lecture Notes in Artificial Intelligence, pages 78–90. Springer, 2005.

15. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Proc. of the 10th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR 2006), pages 57–67. AAAI Press, 2006.

16. Ullrich Hustadt. Resolution-Based Decision Procedures for Subclasses of First-Order Logic. PhD thesis, Universität
des Saarlandes, Saarbrücken, Germany, November 1999.

17. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Checking: 1020 States and Be-
yond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 1–33, Washington,
D.C., 1990. IEEE Computer Society Press.

18. Boris Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Univesität
Karlsruhe (TH), Karlsruhe, Germany, January 2006.

19. A. Nonnengart and C. Weidenbach. Computing small clause normal forms. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. Elsevier Science, 2001.

20. Guoqiang Pan, Ulrike Sattler, and Moshe Y. Vardi. Bdd-based decision procedures for the modal logic k. Journal of
Applied Non-Classical Logics, 16(1-2):169–208, 2006.

21. Joachim Posegga. Deduktion mit Shannongraphen für Prädikatenlogik erster Stufe., volume 51 of DISKI. Infix
Verlag, St. Augustin, Germany, 1993.

22. Joachim Posegga and Peter H. Schmitt. Automated deduction with shannon graphs. Journal of Logic and Computa-
tion, 5(6):697–729, 1995.

23. Richard Rudell. Dynamic variable ordering for ordered binary decision diagrams. In ICCAD ’93: Proceedings of the
1993 IEEE/ACM international conference on Computer-aided design, pages 42–47, Los Alamitos, CA, USA, 1993.
IEEE Computer Society Press.

24. U. Sattler and M. Y. Vardi. The hybrid mu-calculus. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of
the International Joint Conference on Automated Reasoning, volume 2083 of LNAI, pages 76–91. Springer Verlag,
2001.

25. Klaus Schild. A correspondence theory for terminological logics: Preliminary report. In In Proceedings of the
International Joint Conference of Artificial Intelligence (IJCAI 1991), pages 466–471, 1991.

26. Seiichiro Tani, Kiyoharu Hamaguchi, and Shuzo Yajima. The complexity of the optimal variable ordering problems
of shared binary decision diagrams. In ISAAC ’93: Proceedings of the 4th International Symposium on Algorithms
and Computation, pages 389–398, London, UK, 1993. Springer-Verlag.

	Towards Novel Techniques for Reasoning in Expressive Description Logics based on Binary Decision Diagrams
	Uwe Keller

